skip to main content


Search for: All records

Creators/Authors contains: "Zoltowski, Carla B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Prior research on engineering students’ understandings of ethics and social responsibility has produced mixed and sometimes conflicting results. Seeking greater clarity in this area of investigation, we conducted an exploratory, longitudinal study at four universities in the United States to better understand how engineering undergraduate students perceive ethics and social responsibility and how those perceptions change over time. Undergraduate engineering students at four U.S. universities were surveyed three times: during their 1st (Fall 2015), 5th (Fall 2017), and 8th semesters (Spring 2019). The students who completed all three surveys (n = 226) comprise the sample that was analyzed in this paper for changes in their scores on five instruments: Fundamentals of Engineering/Situational Judgment, Moral Disengagement, ABET Engineering Work and Practice Considerations, Macroethics, and Political and Social Involvement Scale. We found that students modestly increased their knowledge of ethics and ability to apply that knowledge in situations calling for them to exercise judgment. In addition, they consistently indicated that health and safety considerations in engineering were of highest importance. They also showed steady levels of social consciousness over time, in contrast to other studies which detected a culture of increasing disengagement in engineering students throughout the four years of their undergraduate studies.

     
    more » « less
  2. Engineering education researchers have identified a lack of alignment between the complexities of professional engineering contexts and the ways that we train and evaluate the ethical abilities and dispositions of engineers preparing for professional practice. The challenges that engineers face as practitioners are multifaceted, wicked problems situated in unique and varied disciplinary and industry contexts. Understanding the variations in ways of experiencing ethics by practicing engineers in these complex professional contexts will support a better alignment between engineering ethics instruction and what students might experience in professional practice. While there is a need for richer and more contextually-specific ethics training for many areas, our initial focus is the healthcare products industry. Thus, our NSF-funded CCE STEM project will enable us to analyze the alignment of relationships among frameworks for ethics education in engineering and the reality of engineering practice within the health products industry. As a first phase, the project has focused on understanding the different ways in which practicing engineers experience ethical issues in the health products industry using phenomenography, an empirical research methodology for investigating qualitatively different ways people experience a phenomenon. In the second phase, we have analyzed critical incidents that potentially cause the variation in experiencing ethics in practice. The findings of these studies are anticipated to serve as a guidepost for aligning educational strategies and developing effective training for future ethical practitioners. In our paper, we present an overview of the study (background and methods), progress to date, and how we expect the results to inform engineering ethics education and industry ethics training. 
    more » « less
  3. As part of National Science Foundation (NSF) sponsored Research in the Formation of Engineers (RFE), we have been focusing on inclusive teaching strategies for engineering professors. Now, in the presence of a pandemic and protests for racial justice in America, underrepresented students are facing unprecedented challenges as they navigate new situations of remote learning. This paper describes inclusive teaching strategies in the current context of isolating situations. Where possible, we point to examples of some specific virtual tools that instructors can use in their remote learning courses. 
    more » « less
  4. In light of both social and ABET expectations, engineering educators need to consider how to effectively infuse engineering ethics education into current engineering curricula. This article describes our initial efforts in that realm. We considered how to improve ethics education in engineering through establishing an academic-industry partnership, which facilitated conversation between engineering faculty members and practicing engineers in industry. We formed a College-level Ethics Advisory Council with representation from industry partners across all 13 engineering departments in Purdue’s College of Engineering. As the first official activity, we held an Ethics Advisory Council Workshop to define common goals and share mutual expectations for long-term relationships. This article shares some basic information about the academic-industry partnership and outputs from the Ethics Advisory Council Workshop. We also discuss lessons we learned from the initial work on the partnership, including limitations and other considerations important for potential adopters of such a strategy at their institution. This article can provide insights to engineering educators who are interested in adopting the academic-industry partnership approach to facilitate direct conversations between academia and industry, especially for better engineering ethics education. 
    more » « less
  5. In this work-in-progress paper, we present a study design for exploring strategies to involve engineering faculty in inclusive teaching practices, which are practices that integrate informal mentoring strategies into everyday communication with students in efforts to improve their interest, capacity, and belongingness in engineering. As part of a larger NSF-funded study on the interactions of engineering professional formation with diversity and inclusion, we will use semi-structured interviews to investigate an electrical and computer engineering (ECE) faculty’s intention to implement inclusive teaching practices, using Fishbein and Ajzen’s reasoned action model to define intention. The interviews will be focused around an inclusive teaching “tip sheet” that was recently distributed to the ECE faculty. These interviews will allow us to characterize factors that influence the development of such an intention within the context of an engineering department, in order to make recommendations for administration. 
    more » « less
  6. Three broad and enduring issues have been identified in the professional formation of engineers: 1) the gap between what students learn in universities and what they practice upon graduation; 2) the limiting perception that engineering is solely technical, math, and theory-oriented; and 3) the lack of diversity (e.g., representation of a wide range of people, thought, and approaches toward engineering) and lack of inclusion (e.g., belonging and incorporating different perspectives, values, and ways of thinking and being in engineering) in many engineering programs. Although these are not new challenges in professional formation, these issues are highly complex, interconnected, and not amenable to simple solution. That is, they are “wicked” problems, which can be best understood and mitigated through design thinking, a human-centered approach based on empathy, ideation, and experimentation, as it is a useful perspective for addressing complex and ambiguous issues. Thus, this NSF-funded RFE study utilizes a design thinking approach and research activities to explore foundational understandings of formation and diversity and inclusion in engineering while concurrently addressing three project objectives: 1) To better prepare engineers for today’s workforce; 2) To broaden understandings of engineering practice as both social and technical; and 3) To create and sustain more diverse and inclusionary engineering programs. In this paper, we provide an overview of the multi-year project and discuss emerging findings and key outcomes from across all phases of the project. Specifically, we will showcase how the research has identified the concurrent ways that understandings of diversity and inclusion are impacted significantly by the local contexts (and cultures) of each department while being compounded by the larger College/University/discipline-wide understandings of who is an engineer and what skills legitimize the identity of “an engineer.” 
    more » « less
  7. This WIP paper describes a team approach to phenomenography on ethical engineering practice in the health products industry and its potential impact on research quality. Although qualitative researchers often conduct phenomenography collaboratively, most often a single individual leads the data collection and analysis; others primarily serve as critical reviewers. However, quality may be enhanced by involving collaborators as data analysts in “sustained cycles of scrutiny, debate and testing against the data” [1, p. 88], thus interweaving unique perspectives and insights throughout the analysis process. Nonetheless, collaborating in this intensive data analysis process also presents unique challenges. In this paper, we (1) describe the processes we are applying in an integrated team-based phenomenographic study, (2) identify how the team approach affects research quality, and (3) reflect on the challenges inherent to this process. We ground this reflective case study in the methodological literature on phenomenography. Our team strategies include multiple interviewers (and, when possible, two interviewers per inter-view), team communication through reflective memos, and integration of individual and team-based data analysis with peer critique of individual analyses. We compare our team approach with typical individual phenomenographic approaches, and we align our procedures with the five strategies of the Qualifying Qualitative Research Quality Framework, or Q3, designed by Walther, Sochacka, and Kellam [2]. In aligning strategies, we consider benefits and trade-offs. 
    more » « less
  8. This Research Work-in-Progress paper builds on previous literature related to the professional formation of engineers and issues pertaining to diversity and inclusion within engineering though a comparative analysis of two different disciplines. These issues are complex, interrelated and challenging to untangle, and thus require innovative strategies to explore them. Our larger study utilizes design thinking with an embedded mixed-methods research approach to investigate foundational understandings of professional formation and diversity and inclusion in engineering. Herein, we describe preliminary findings from co-design sessions we conducted in Biomedical Engineering (BME) and Electrical and Computer Engineering (ECE) at Purdue University. We compare the design solutions generated by stakeholders and discuss insights regarding the unique contexts and needs of each program, as well as the impacts of the different activities and contexts of the design sessions themselves. 
    more » « less
  9. This Work-in-Progress Research paper describes (1) the contemporary research space on ethics education in engineering; (2) our long-term research plan; (3) the theoretical underpinnings of Phase 1 of our research plan (phenomenography); and (4) the design and developmental process of a phenomenographic interview protocol to explore engineers’ experiences with ethics. Ethical behavior is a complex phenomenon that is complicated by the institutional and cultural contexts in which it occurs. Engineers also have varied roles and often work in a myriad of capacities that influence their experiences with and understanding of ethics in practice. We are using phenomenography, a qualitative research approach, to explore and categorize the ways engineers experience and understand ethical engineering practice. Specifically, phenomenography will allow us to systematically investigate the range and complexity of ways that engineers experience ethics in professional practice in the health products industry. Phenomenographic data will be obtained through a specialized type of semi-structured interview. Here we introduce the design of our interview protocol and its four sections: Background, Experience, Conceptual, and Summative. We also describe our iterative process for framing questions throughout each section. 
    more » « less